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SUMMARY

In a fully coupled Lagrangian=Eulerian two-phase calculation, the source terms from computational par-
ticles must be agglomerated to nearby gas-phase nodes. Existing methods are capable of accomplishing
this particle-to-gas coupling with second-order accuracy. However, higher-order methods would be useful
for applications such as two-phase direct numerical simulation and large eddy simulation. A theoretical
basis is provided for producing high spatial accuracy in particle-to-gas source terms with low compu-
tational cost. The present work derives fourth- and sixth-order accurate methods, and the procedure for
even higher accuracy is discussed. The theory is also expanded to include two- and three-dimensional
calculations. One- and two-dimensional tests are used to demonstrate the convergence of this method
and to highlight problems with statistical noise. Finally, the potential for application in computational
�uid dynamics codes is discussed. It is concluded that high-order kernels have practical bene�ts only
under limited ranges of statistical and spatial resolution. Additionally, convergence demonstrations with
full CFD codes will be extremely di�cult due to the worsening of statistical errors with increasing
mesh resolution. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Usually, large eddy simulations (LES) and direct numerical simulations (DNS) of single-phase
�ows employ numerical schemes with a high formal order of accuracy. Spectral methods or
high-order �nite di�erence schemes are often favoured for providing the best use of available
computational resources. The numerical techniques for high-accuracy single-phase calcula-
tions are well established, but for two-phase Lagrangian=Eulerian calculations, such high-order
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accuracy constructions have not been fully accomplished. Unfortunately, there is no established
numerical framework that is known to give better than second-order convergence for coupled
Eulerian gas=Lagrangian two-phase simulations. The current work is dedicated to resolving one
of the di�culties of achieving high-order accuracy in two-phase �nite di�erence simulations.
In order to analyse the accuracy of two-phase schemes, it is helpful to divide the sim-

ulation into composite parts. Each of these parts can be studied independently, and it is
expected that the overall scheme will possess accuracy commensurate with its components.
This approach was used successfully by Are et al. [1] to establish second-order accuracy in a
Lagrangian=Eulerian spray code. For the current discussion, the parts of the two-phase scheme
will be divided as follows:

(1) The gas-phase solver.
(2) integration of the ODEs for particle position and momentum.
(3) interpolation of gas-phase properties to particle locations.
(4) summation of dispersed-phase sources.
(5) spray sub-models.

Item 1 is considered to be well understood already. Item 2 is also not expected to be
extremely di�cult. Many computations use high-order Runge–Kutta schemes, for example,
to move particles and integrate the acceleration equation. The third item, interpolation of
gas-phase properties to the particle locations, is another part of the simulation that has al-
ready been treated with higher order accuracy. Interpolation is required because the particles
in the calculation are not located exactly on cell vertices. Some scheme is required to take
the gas-phase quantities known at surrounding nodes and estimate what the values of these
quantities would be at the particle locations. Linear interpolation was shown to be adequate
for second-order accuracy by Aggarwal et al. [2]. Higher-order methods are available for this
‘gas-to-particle’ interpolation. For example, Miller and Bellan [3] used fourth-order Lagrange
polynomial interpolation for their DNS scheme.
It is the fourth item which presently causes di�culties and which the current work

addresses. In this part of a two-phase code, the e�ect of the particle on the gas is calcu-
lated. Particles must exchange momentum, mass, and energy with the gas phase. The rate of
exchange varies spatially and shows up as a source term in the gas-phase equations. This
source term must be calculated at each node location, which is typically done by a weighted
summation of contributions from particles in the vicinity. For example, Miller and Bellan [3]
uses a variant of Aggarwal et al.’s cloud-in-cell weighting [2]. Are et al. [1] analysed particle-
to-gas coupling with the goal of achieving second-order accuracy. Their results provided a
method of deriving the accuracy of weighting schemes and were contrary to some of Aggarwal
et al.’s observations. The method of Are, Hou, and Schmidt can be extended to fourth-,
sixth-, or even eighth-order accuracy and can be used in one, two, or three dimensions. This
extension is the goal of the present work: to use analytical methods to derive these high-order
schemes.
One of the challenges to any formally high-order scheme is to succeed in the face of

large statistical errors. The statistical di�culties of Lagrangian particle tracking have been
discussed by Miller and Bellan [3], Xu and Pope [4], and Subramaniam [5]. Subramaniam’s
work provides a theoretical framework, while Xu and Pope combined numerical tests with
statistical analysis of a coupled Lagrangian=Eulerian calculation for turbulent single-phase �ow.
An idea from Miller and Bellan was that source terms produced large amounts of numerical
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noise, and thus they used smoothing to ameliorate the errors. Subramaniam and Haworth
�tted multidimensional functions to local source terms in order to reduce statistical noise
in multi-dimensional PDF-based turbulence simulations using a least-squares approach [6].
This approach, though for single-phase simulations, recognized the statistical noise inherent
in mixed Monte-Carlo Lagrangian=Eulerian solutions. The least-squares �tting demonstrated
better resistance to statistical noise than a direct kernel approach.
The contribution of the present work is to derive methods that could potentially achieve

high formal order of accuracy. Much of the analysis below is done for a single dimension,
though the results are also applicable to multiple dimensions. The analytical extension to
three dimensions is shown to be extremely simple. One- and two-dimensional kernels are
tested using a problem that admits a closed-form solution. The results verify the formal order
of accuracy of each kernel and also show the conditions under which high-order kernels are
useful. A least-squares method, known to be tolerant of statistical noise, is compared to the
higher-order kernels. Finally, the conclusions discuss how the results of this paper may be
used to construct a CFD code with high spatial order of accuracy.

SPATIAL ERROR IN PARTICLE-TO-GAS COUPLING

The gas-phase Navier–Stokes equations in two-phase calculations include a volumetric source
term, f, that represents the e�ect of the dispersed phase on the velocity �eld for a given time
step. For a �nite-di�erence scheme, the discretized equations thus require an estimate of f at
each node location x. Spatial error occurs, due to the fact that the particles are not located
at the gas-phase node, but are instead scattered in space. Statistical error also occurs due to
the �nite number of particles. (The current study is only dedicated to understanding errors
in �nite-di�erence calculations. In a �nite-volume approach a particle is either in or out of
the volume, resulting in statistical error and no spatial error.) This problem has been studied
in a general form by mathematicians such as Bartlett [7] and Parzen [8]. Parzen studied
second-order accurate kernels and emphasized statistical error. Rosenblatt [9] and Parzen [8]
limited themselves to non-negative kernels, which will be shown below, to limit their analyses
to second-order accurate methods. Bartlett, using di�erent methods than the current work,
analysed both second- and fourth-order kernels. Bartlett stopped at fourth-order, saying it was
doubtful that higher order accurate methods would be useful, since statistical error was so
signi�cant. The current paper goes up to sixth order and explains how to go further, and to
generalize the results to two and three dimensions. The beginning of the present derivation
repeats Are et al. [1], who stopped at second order.
The following analysis will examine spatial errors in the volumetric source term fn at a

gas-phase node calculated from a set of n nearby particles. Each particle, numbered by the
index i, is located at xip and contributes an amount s

i to the value of fn. Note that si has
dimensions of mass, momentum, or energy but fn has units of the respective quantity per
volume, which is typical of a �nite-di�erence scheme, and that each computational particle
may represent a number of physical particles.
The exact value of a particle’s contribution depends on the size, the velocity, and number

of physical particles represented by each computational particle. However, f varies in space,
and so none of the values of f(xip) exactly correspond to f(x). A spatial error occurs due to
the distance between each particle and the gas-phase node as well as the variation in f.
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To begin the analysis, the value of fn is calculated from a weighted sum of the contributions
of the particles. The weighting factor, W , depends on the di�erence between the node location,
x and the particle location, xip. The total value estimated for f is denoted as fn.

fn=
n∑
i=1
W (xip − x)s(xip) (1)

In real calculations, the summation over a �nite number of particles gives rise to a statistical
error. In order to isolate the spatial error, an in�nite number of particles is used here. This
assumption allows the analysis to proceed based on the expectation of the dispersed-phase
source, but discards information about statistical error. Thus, it is assumed that the numerical
estimate 〈f〉, based on an in�nite number of particles, includes only spatial errors (temporal
errors are beyond the scope of the current work). The problem of statistical noise will be
visited later in the paper.
The summation of Equation (1) is then recast as an integral over space around the node. The

limits of the integral would depend on the width of the smoothing kernel, but are generally
one to two gas-phase cell widths. The superscript on the particle location is dropped from
this point onward, since the individual particles are no longer being considered. The e�ect of
the particle on the gas-phase source term is given in the following equation:

〈f(x)〉=
∫
W (xp − x)f(xp) dxp (2)

Despite the fact that the source term is normally considered at discrete locations, the exact
function, f, is smooth and may be estimated with a Taylor series expansion. The value of f
can be estimated at each particle location a small distance (xp − x) from the node, as given
in the following equation

f(xp)=f(x) +
∞∑
n=1

1
n!
@nf
@xn

∣∣∣∣
x
(xp − x)n (3)

This expression uses the Taylor series to quantify the error that occurs from the use of particles
in the vicinity of gas-phase node. Errors are due to the variation in the source terms and the
�nite distance between the node and the particles. Equation (3) can be substituted into the
integrand in Equation (2) to relate the particle contributions to the estimate 〈f(x)〉.

〈f(x)〉=
∫
W (xp − x)f(x) dxp +

∫
W (xp − x)

∞∑
n=1

1
n!
@nf
@xn

∣∣∣∣
x
(xp − x)n dxp (4)

The f(x) term can be pulled out of the integral in the �rst term on the right-hand side.
Further, the derivatives in the right-most term are evaluated at the gas-phase node location
and are not a function of the variable of integration. Hence, the order of the summation and
integration can be exchanged.

〈f(x)〉=f(x)
∫
W (xp − x) dxp +

∞∑
n=1

1
n!
@nf
@xn

∣∣∣∣
x

∫
W (xp − x)(xp − x)n dxp (5)

The left side of Equation (5) is the expected value of the source term used in the gas-phase
Navier–Stokes equations. By comparing the exact answer f(x), and the expected numerical
value 〈f(x)〉 for Taylor polynomials of increasing degree, one can note the error.
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For example, Equation (5) gives a constraint for the weighting function so that if f is a
constant, the gas-to-particle coupling gives the right answer. Equation (5) would reduce to

1=
∫
W (xp − x) dxp (6)

Equation (6) gives a consistency constraint for kernels which is easy to satisfy. If one uses the
simplest possible scheme, then W is a constant close to x and zero outside of the integration
area. This method is referred to as the ‘nearest node’ weighting function and may be
de�ned as

W (xp − x)=
⎧⎨
⎩
1
�x

if |xp − x|6‘
0 if |xp − x|¿‘

(7)

This de�nition presumes that the width of the non-zero portion of the kernel is 2‘. The kernel
need not be the same width as a gas-phase cell.
The starting point of attaining higher-order schemes is Equation (5). Applying Equation (5)

to increasingly higher-order polynomial forms of f can produce further constraints for achiev-
ing a higher order of accuracy. Consider next, a �rst-order variation in f, of the form

f(x)=A+ Bx (8)

Substituting this function on both sides of Equation (5) and using the consistency constraint,
Equation (6), gives the following:∫

W (xp − x)(xp − x) dxp = 0 (9)

To satisfy this constraint, it is su�cient that the kernel be a symmetric function. If
W (x−xp)=W (xp−x) then Equation (9), the second constraint is satis�ed. This gives second-
order global accuracy (see Reference [1] for a demonstration of this assertion with a spray
calculation) The use of a second-order polynomial of the form

f(x)=A+ Bx + Cx2 (10)

gives rise to the third constraint∫
W (xp − x)(xp − x)2 dxp = 0 (11)

Since (xp − x)2 is always positive, the kernel must change signs over the domain to satisfy
Equation (11). No all-positive kernel can satisfy this constraint; a kernel must change signs
in order to exceed second-order accuracy.
The above process can be continued for higher-order accuracy. For generality, no speci�c

kernel width is assumed in the above derivations. The truncation error is proportional to
the kernel width raised to the order of accuracy of the scheme. Narrower kernels o�er a
higher spatial accuracy, but wider kernels have the advantage of a larger sample size. The
kernel widths could be signi�cantly larger than the gas-phase node spacing in order to reduce
statistical error. Given the notoriously slow convergence of Monte-Carlo schemes, the larger
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kernel width may be advantageous. This must be balanced, of course, with the need to resolve
important physical scales in the calculation. Note that the property of strong conservation, that
the amount of momentum, energy, or mass lost by the particle phase is exactly gained by the
gas phase, cannot be preserved with higher order kernels or kernels that overlap each other
from neighbouring cells.
For simplicity, the dummy variable in the integration is changed to y, where y is the

distance between a node and the particle. The limits of integration will simply be assumed to
be from −‘ to ‘, representing the ‘support’ of the kernel. For a kernel that is one-cell wide,
(the same width as nearest-node) the value of ‘ is �x=2. For the simplest overlapping kernels,
such as the cloud-in-cell approach or the two-dimensional equivalent used by Aggarwal et al.
[2], ‘ is �x. Hence Equation (11) becomes slightly simpler, as shown in the following
equation: ∫ ‘

−‘
W (y)y2 dy=0 (12)

This relationship can be satis�ed by any number of kernels. The logical choice would be an
even function of y that can change signs. Similar to the work of Nordin [10], one might
chose an inverse square weighting. However, this approach has the unfortunate characteristic
of being unbounded at y=0. A good choice is an even-order polynomial, as shown in the
following equation

W (y)= a+ by2 (13)

Substituting this equation in Equation (12) and noting that the integral from −‘ to ‘ can be
converted to an integral from 0 to ‘ gives the following:∫ ‘

0
(ay2 + by4) dy=0 (14)

Evaluation of the integral gives

a= − 3
5 b‘

2 (15)

Using Equation (6) and integrating from −‘ to ‘ uniquely determines a and b.

a=
1
‘
9
8

b=
1
‘3

−15
8

(16)

while studying how to estimate densities of discrete quantities, Bartlett [7] also derived Equa-
tions (13) and (16). Until now, Bartlett’s results have not previously been noted in the
multiphase-�ow literature, and more importantly, have not been extended to source terms in
multiple dimensions, as is required for practical use in CFD. The mathematical analysis used
here is intended to be more general.
A plot of the quadratic kernel, as de�ned by Equations (13) and (16), is given in Figure 1.

Note that, as required by Equation (11), the kernel is negative over part of the interval. This
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Figure 1. A fourth-order kernel given by Equations (13) and (16).

may seem odd that a source should change sign (e.g. that a droplet evaporating would cause
the gas phase to lose vapour), but one should remember that high-order �nite di�erences are
often oscillatory in nature. For spatial error, it is not the behaviour any single particle that
matters, but rather the agglomerate behaviour of many particles.
This kernel was designed to eliminate the second error term in the summation in

Equation (5). Hence, the next leading error term appears to be a third-order term. Thus the
above scheme produces at least third-order accuracy. However, a close examination of the
next constraint is warranted. This would be∫ ‘

−‘
W (y)y3 dy=0 (17)

This constraint is satis�ed by any even kernel, and hence the scheme shown in Figure 1 is
actually fourth-order accurate. In fact, the use of even kernels automatically eliminates all odd-
order error terms. From examination of Equation (5), one can thus conclude that satisfying
Equation (6) and

∫ ‘

−‘
W (y)ym dy=0 (18)

for all integers m from 2 to n provides an exact answer for a source distribution intensity that
follows a polynomial of order n or less. Thus, the leading error term for such a kernel is at
least order n + 1. Any even kernel automatically satis�es Equation (18) for odd m. Hence,
the leading error term is actually n + 2 for even values of n. Thus, sixth-order accuracy is
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achieved by satisfying Equations (6), (12), and (19).∫ ‘

−‘
W (y)y4 dy=0 (19)

The second-order polynomial weighting used in Equation (13) cannot satisfy all three equa-
tions (6), (12), and (19). However, a higher-order polynomial could be satisfactory. Using
an even kernel automatically satis�es Equations (9) and (17), as well as the corresponding
�fth-order equation. Hence, a good choice for a sixth-order kernel is an even, fourth-order
polynomial.

W (y)= a+ by2 + cy4 (20)

Substituting Equation (20) into Equations (6), (12), and (19) gives the three equations required
to solve for the three constants in Equation (20). Again, it simpli�es the integration if one
uses symmetry to change the integration of the equations to the interval 0 to ‘. The three
resulting equations are written in matrix form in Equation (21).⎡

⎢⎢⎢⎢⎢⎢⎢⎣

‘
‘3

3
‘5

5
‘3

3
‘5

5
‘7

7
‘5

5
‘7

7
‘9

9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
a

b

c

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1
2
0

0

⎤
⎥⎥⎥⎦ (21)

The solution for a, b, and c are given in the following equation:

⎡
⎢⎢⎣
a

b

c

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

225
128‘

−1050
128‘3

945
128‘5

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

A plot of this kernel is shown in Figure 2. This kernel will be sixth-order accurate. The pro-
cedure can be continued to produce any even order of accuracy. For example, an eighth-order
kernel uses a sixth-order polynomial and requires solving for the four unknown coe�cients
using the additional constraint given in the following equation:∫ ‘

−‘
W (y)y6 dy=0 (23)

STATISTICAL ERROR

Statistical errors have been removed from the previous discussion by taking the limit of an
in�nite number of particles. However, in practical computations, statistical noise levels can
be larger than spatial error. The obvious statistical factor is that ‘larger samples are better’.
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Figure 2. A sixth-order accurate kernel given by Equations (20) and (22).

One way that this can be accomplished is by widening the support of the kernel. The above
derivations are all based on a kernel width of 2‘. The wider the extent of the kernel, the larger
the sample size. However, there is a trade-o� with spatial accuracy. With high-order accurate
schemes, the spatial error will quickly decrease to a point where it is comparable to the
statistical noise level. Applied mathematicians refer to this �eld of study as ‘non-paramentric
density estimation’ and have studied the errors extensively. Normally the purpose of their
analysis is to determine the optimal kernel width. For example, Rosenblatt [9] provides some
discussion of statistical error for non-negative kernels. Bartlett [7] o�ers analysis of second-
and fourth-order kernels, which requires the assumption of non-negativity to be dropped. Using
a �nite sample size, the mean square error can be estimated as a sum of statistical error, due
to variance, and the spatial error, which represents a bias. (The word ‘bias’ is used in the
turbulence PDF literature to refer to a source of error that is not considered in the present
work, but is due to feedback from particle–particle e�ects. The dual meaning of the term can
be confusing.) As explained by Rosenblatt, this expression is

E2 =�2[fn(x)] + |E[fn(x)]− f(x)|2 (24)

where E2 is the mean square error, �2 is the variance, E[X ] represents the expectation of the
random variable X , and fn(x) is the estimated value based on a sample size n. The variance
can be approximated by the following equation [7]:

�2[fn(x)]≈ f(x)n
∫ ‘

−‘
W 2(y) dy (25)
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Figure 3. General trend of mean expected error versus resolution predicted by
Equation (26). The units of both axes are arbitrary.

For the nearest-node kernel, the mean expected error in a single kernel width would be
approximately [7]:

E≈
√
f
n‘
+
1
4
‘4

144

(
d2f
dx2

)2
(26)

The �rst term under the radical represents the statistical error and the second term is spatial
error. As is typical of stochastic simulations, the error decreases with the number of particles
in the sample to the negative one-half power. What is particularly unfortunate is that the
mesh resolution appears in the denominator of the statistical error term, meaning that the
convergence with mesh re�nement is conditional on the behaviour of n. Performing re�nement
while keeping the number of particles per cell constant is not su�cient for demonstrating
convergence unless the number of particles is so large, that the statistical error is suppressed.
In general, the statistical error will start to eclipse the spatial error, as shown in Figure 3. On
the right side of the plot, where the mesh would be coarse, the spatial error is dominant and
on the left side of the �gure, where the mesh would be �ne, the statistical error dominates. In
between, there is an optimal resolution (sometimes referred to as ‘bandwidth’) that minimizes
total error [6].
To always be able to demonstrate convergence, the number of particles per cell must

increase super-linearly. If one wishes to guarantee that the mean expected error converges
at the same rate as spatial error, then the �rst term under the square root must have the
same, or higher power, dependence on mesh resolution. This means that for the nearest-node
approach, the number of particles per cell must be proportional to �x to the negative �fth
power. Thus the total number of particles in a one-dimensional domain must increase with
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Table I. Comparison of the variances of several kernels.

Kernel Support Variance

Nearest node
[
−�x
2
;
�x
2

]
f
n�x

W (y)=
1
2‘

[−‘; ‘] 1
2
f
n‘

Fourth order [−‘; ‘] 9
8
f
n‘

Sixth order [−‘; ‘] 225
128

f
n‘

The second kernel is the nearest-node kernel, but spread out to
the same width as the fourth- and sixth-order kernels.

�x to the sixth power in order to guarantee numerical convergence. This result may explain
why convergence of two-phase CFD results is so di�cult to observe. Only with a very large
number of particles can one observe the e�ect of the spatial error term. For example, Are et al.
[1] used 300 000 particles in their two-dimensional convergence tests, which was apparently
su�ciently large to minimize the e�ect of the �rst term in Equation (26).
For higher order accurate kernels, the trend is slightly worse. Following Bartlett, the mean

expected error for a cell using the fourth-order accurate method is given by the following
equation:

E≈
√
9
8
f
n‘
+

(
9
24

1
110

)2
‘8

(
d4f
dx4

)2
(27)

Though the spatial error term is indeed fourth-order accurate, the statistical error term has
a slightly higher coe�cient. This trend continues with higher order kernels. The variance is
summarized for four kernels in Table I. As mentioned in the previous section, the width of
the kernels is somewhat arbitrary. The nearest node kernel, as inferred by its name, spans
a half node spacing in each direction. The higher-order kernels are applied to twice that
spacing. The second kernel in the table is constant, like the nearest-node, but spread out
over the same width as the higher-order kernels. One can observe that widening a kernel
reduces its variance, and the higher-order kernels tend to have increasing variance. Thus one
would expect the higher-order kernels to be more susceptible to statistical noise. In the case
of the fourth-order kernel, one would have to increase the number of particles per cell with
resolution to the negative ninth-power, and the total number of particles in one-dimension to
the tenth power in order to keep statistical noise in check.
Another method of estimating the source term strength is to use least-squares �tting.

For example, Subramaniam and Haworth [6], successfully applied this approach to a three-
dimensional CFD calculation. Least-squares �ts are tolerant of noise and not computationally
expensive. The procedure is to �t a polynomial to kernel estimates of the source term at
several points around the node of interest. The number of points is arbitrary, so long as it
exceeds the minimum to uniquely determine the coe�cients of the �tted polynomial. Since
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the above kernel analysis shows that a symmetric weighting has no odd-order error terms, it
is reasonable to assume that the span of points used in the least-squares �t should also be
symmetric around the node of interest. The order of the polynomial �t should be one less
than the desired order of accuracy. For example, to achieve fourth-order accuracy, one should
use a third-order polynomial.
Least-squares �ts have the advantage that they reduce statistical error. However, one should

expect lower spatial accuracy, since the �tting process uses data that are further from the node
than the relatively compact kernels described above. In the tests below, least-squares �tting
will be compared to the high-order kernels.

EXTENSION TO THREE DIMENSIONS

The above analysis must be extended to multiple dimensions. If one chooses to use a mul-
tidimensional kernel that is a product of the above one-dimensional kernels, the extension is
simple. For example, the kernel would become:

W (x; y; z)=Wx(x)Wy(y)Wz(z) (28)

In this form, the one-dimensional constraints remain unchanged. For example, the requirement
for second-order accuracy, given in Equation (9) becomes trivially di�erent, when applied to
Equation (28). Since each component of the three-dimensional kernel is a function of only
one variable, the other two components can be pulled outside the integral, leaving the x
constraint unchanged. New cross-derivative error terms which appear in the multi-dimensional
Taylor series expansion do not present any di�culties, since lower order constraints appear
in these terms. The lower-order constraints will have already been satis�ed with the higher-
order kernels, nullifying the new terms. For example, if one is trying to achieve fourth-
order accuracy, the third-order cross-derivative terms will give rise to �rst- and second-order
constraints that have already been satis�ed.
The full three-dimensional derivation is both laborious and unnecessary. For clarity, a two-

dimensional derivation will be given here. By using separable multi-dimensional kernels,
lower-order constraints are easily noted, which are known to integrate to zero. The three-
dimensional case would be perfectly analogous.
As in Equation (2), the integral of the weighted sources over the two-dimensional cell

would be:

〈f(x; y)〉=
∫ ∫

Wx(xp − x) ·Wy(yp − y)f(xp; yp) dxp dyp (29)

The expansion of the source term in two dimensions in the neighbourhood of (x; y) is

f(xp; yp)∼=f(x; y) + @f
@x
(xp − x) + @f

@y
(yp − y)

+
1
2
@2f
@x2

(xp − x)2 + 1
2
@2f
@y2

(yp − y)2 + @2f
@x@y

(xp − x)(yp − y) (30)
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Inserting Equation (30) into Equation (29) and noting that the partial derivatives are all taken
at a �xed (x; y) location, gives the following:

〈f(x; y)〉=f(x; y)
∫
Wy(yp − y)

(∫
Wx(xp − x) dxp

)
dyp

+
@f
@x

∫
Wy(yp − y)

(∫
Wx(xp − x) (xp − x) dxp

)
dyp

+
@f
@y

∫
Wx(xp − x)

(∫
Wy(yp − y) (yp − y) dyp

)
dxp

+
1
2
@2f
@x2

∫
Wy(yp − y)

(∫
Wx(xp − x) (xp − x)2 dxp

)
dyp

+
1
2
@2f
@y2

∫
Wx(xp − x)

(∫
Wy(yp − y) (yp − y)2 dyp

)
dxp

+
@2f
@x@y

∫
Wx(xp − x)(xp − x)

(∫
Wy(yp − y) (yp − y) dyp

)
dxp

+ : : : (31)

This equation can be reduced by noting that the integrals in the �rst term on the right side
are unity, and for the quadratic kernel, all the inner integrals in subsequent terms are zero.
The �rst non-zero integrand, after the leading term, is when a fourth power occurs in the
integral. Hence, Equation (31) reduces to

〈f(x; y)〉=f(x; y) +O[(x − xp)4] +O[(y − yp)4] (32)

This quadratic kernel can be plotted for the two-dimensional case, and is shown in Figure 4.
This kernel is simply the product of the two one-dimensional kernels. Quite simply, using a
separable kernel works like independent one-dimensional integrals when working in two or
three dimensions.

NUMERICAL TESTS

In order to test the theoretical and practical accuracy of the high-dimensional kernels, a simple
scenario was contrived. This scenario is general enough to provide useful information about
how these techniques perform, but is simple enough to admit an analytical solution which
can be used for checking convergence rates. Consider the source term that appears in the
continuum phase of a two-phase Lagrangian=Eulerian �uid dynamics calculation representing
the momentum per unit volume exchanged between phases. There is variation in the source
term due to spatially varying particle number density and relative velocity. This term is
represented by f on the right side of the Navier–Stokes equations as a source term, as shown
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Figure 4. A quadratic, fourth-order kernel constructed from the product of two
one-dimensional kernels. The two horizontal axes are (x − xp) and (y − yp) and

the surface shows the kernel weighting at each point.

in the following equation for the velocity component u in the x direction:

Du
Dt
= − 1

�
@p
@x
+
@�xx
@x

+
@�xy
@y

+
@�xz
@z

+ f (33)

The value of f is normally calculated in Lagrangian=Eulerian simulations by tallying the drag
on nearby particles. In the current one-dimensional test case, f will be estimated for one
instant in time for a two-phase �ow. The Navier–Stokes equations will not be solved, nor
will the particles be moved; this test case is only concerned with the inter-phase source term
as a function of space.
The spatially varying particle number density used in this scenario has an interesting con-

sequence: it means that the centre of particle mass on any interval does not coincide with the
centre of the interval. The information about number density, which comes from the particles,
is always spatially biased. In this particular test case, the number density varies exponentially,
according to the following equation:

n(x)= n0 exp(−�x) (34)

Particles, are distributed according to the above distribution on the line from zero to one. The
statistical weight per numerical particle is set so that the total number of physical particles is
�xed at 109. The value chosen for � is 1=10 and the value of n0, the peak number density
is set so that the integral of number density produces the correct number of particles on the
interval. The relative velocity is assumed to vary exponentially, using the same form as the
number density.

u(x)= u0 exp(−�x) (35)
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Next, it is assumed that the drag force is proportional to the area of the particle and the
relative velocity squared. This permits calculation of the exact the source term at any point x
as given by the following equation and plotted in Figure 6. Note that the chosen value for �
provides a rapid change in the source with position along the line.

fexact(x)=Cr2u20n0 exp(−3�x) (36)

The value of r, representing the radius, was chosen to be a constant. The value of the constant,
C, was set to unity. To quantify error in the numerical estimates, an L2 norm was used, as
given in the following equation. The summation is over all interior points; boundary points
were excluded.

L2 =
√
�x

∑
i
(fn(x)− fexact(x))2 (37)

The tests evaluated the performance of the nearest-node, the quadratic (fourth-order), and
quartic (sixth-order) kernels. A least-squares technique was also included for comparison. This
least-squares technique used here is a simpli�ed form of the approach used by Subramaniam
and Haworth [6], since the current test is only in one dimension. The basic steps for the
least-squares �t are:

1. Calculate all node values using a kernel estimate.
2. Use the node values from the previous step as ‘knots’ for �tting least-squares polyno-
mials. The knots are the locations of the functional values used in the least-squares �ts.
A di�erent set of coe�cients is calculated for each node based on the nearest 11 kernel
estimates from step 1. These 11 points were centred on the node of interest, except
where boundaries interfered, in which case the 11 points were shifted to one side.

3. Evaluate the polynomial at the node location.

For the current work, a fourth-order accurate least-squares �t was attempted. In step 1, two
di�erent kernels were tested: a nearest-node kernel, as used in Reference [6], and a fourth-
order quadratic kernel. A third-order polynomial �t was used in step 2, since this would be
expected to give fourth-order accuracy. Figure 5 shows that the least-squares �t converges
regardless of whether second- or fourth-order kernels are used to estimate the values at the
knots. Both methods give similar errors, though the second-order knots are slightly more
accurate. All subsequent use of least-squares �ts in the current work have been performed
using the nearest-node estimates at the knots.
The point of this test case is to predict a source term that varies in one dimension. Figure 6

shows the predicted source term compared to the exact value at low resolution. In this �gure,
an average of 100 particles per cell is used. The source appears as a peak near x=0 and decays
rapidly with increasing values of x. Figure 6 shows that when the source term is modestly
resolved, the kernels all perform well and least-squares method overshoots as the function
decreases. The performance of the kernels, like the high-order methods traditionally used
for single-phase CFD calculations, permits the user to capture strong gradient with minimal
resolution.
For convergence tests of the kernels, a large number of particles were used. In order to

suppress statistical error, the number of particles was set to give a average of 109 particles per
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Figure 5. Convergence rates of the least-squares treatment of source terms using two
di�erent methods of calculating the values at the knots. The horizontal axis is the

non-dimensional resolution and the vertical axis is non-dimension error.

Figure 6. Estimates of the spatially varying source using several di�erent kernels and the least-squares
technique. Fifteen points are used and an average of 15 particles per point. The calculated source is

normalized by the maximum value, which occurs at x=L=0.
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Figure 7. Convergence rates of various numerical schemes using a large number of particles. Numerical
results (symbols) are compared to theoretical convergence rates (lines).

node. Hence, the number of samples exceeded the number of physical particles. As mentioned
in the discussion of statistical error, the number of computational particles should increase
super-linearly as the domain is re�ned in order to judge convergence. However, by using such
a large number of particles, the statistical error was generally kept low enough to observe
spatial convergence. The results of this test are shown in Figure 7. In this �gure, the non-
dimensionalized error is plotted versus the mesh resolution. The L2 norm is divided by the
integral of the exact answer, I , in order to produce a measure of relative error. The point of
this �gure is to show the asymptotic convergence and to demonstrate that the above kernel
derivations are indeed correct.
One can see from the results that when the numbers of computational particles are large

enough, good convergence can be observed from all the methods. The observed slopes tend
to asymptotically approach the numerical data, with only a few exceptions. The highest order
kernel, the quartic polynomial, indeed approaches sixth-order accuracy. However, it eventually
reaches a level where the error is dominated by statistical noise and does not further converge.
The �gure also shows that the least-squares �t approaches the theoretical fourth-order slope,
but su�ers from a higher overall error level than the second-order nearest-neighbour kernel. As
mentioned previously, this large error is expected because the least-squares method uses data
from so far away from the node of interest. This �gure con�rms the theoretical expectations
deduced from the analysis of various kernels.
The next step was to reduce the sample size and observe the behaviour of the kernels

with only 100 particles per cell. The methods were otherwise the same as used for
Figure 7. The results of the tests are shown in Figure 8. These results show that despite
the problems with statistical noise, the high-order kernels are bene�cial. Most CFD
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Figure 8. Convergence rates of various numerical schemes using
an average of 100 particles per kernel width.

calculations operate with a mesh resolution that is just su�cient to capture the �ow�eld
gradients, since the cost of obtaining a solution increases rapidly as the cell size decreases.
Hence, most calculations would operate on the right side of Figure 8, where the gradi-
ents are barely resolved. Values of ��x of unity would correspond to a mesh resolution
comparable to the length scale of variation in the calculation. At ��x of 0.01, the cal-
culation would be exceptionally well-resolved. The results show that instead of such �ne
mesh resolution, one would do better to spend their resources on more computational par-
ticles (presuming that the numerical particles are a statistical representation of the physical
particles).
Figure 9 shows similar results, but with the average number of particles per cell set to

1000. The shift from spatially dominated error to statistical error is now more evident, as the
data from the nearest-neighbour and least-squares methods both pass through minima. Since
this test case represents a single moment in time, Figure 9 also represents an ensemble of ten
realizations of simulations with 100 particles per cell.
Clearly, statistical noise is dominating the mean expected error in the source term at

extremely �ne mesh resolutions. In the limit of �ne mesh resolution, the error follows the left
side of the curve shown in Figure 3, of the theoretical error. For the kernel schemes, error is
slowly growing as the mesh is re�ned. Only the least-squares �t, with a relatively large spatial
error and small statistical error, shows the complete transition from spatial to statistical error.
One would expect that most two-phase �ow simulations would use the minimum acceptable
mesh resolution to capture spatial gradients, and thus the non-dimensional resolutions (��x)
would be approximately unity. At these more realistic resolutions, the high-order schemes do
show bene�ts, even with modest numbers of particles.
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Figure 9. Convergence rates of various numerical schemes using
an average of 1000 particles per kernel width.

TWO-DIMENSIONAL TESTS

A two-dimensional test was developed to verify the extension of high-dimensional kernels to
multiple dimensions. Like the previous test, the goal is to estimate the inter-phase coupling
source term for a single moment in time. Again, a test case that permits an analytical solution
was used so that the numerical error could be calculated. In this test case, particles were
distributed over a unit square with a spatially varying number density. The number density
was proportional to sin(�x) and sin(�y). Each particle contributed a uniform amount to the
source term calculation, but the spatial variation in number density created a source as a
function of x and y, as given by the following equation and shown in Figure 10:

fexact(x; y)=
n0�2

4
sin(�x) sin(�y) (38)

In Equation (38), the symbol n0 represents the number density of particles per unit area. A
value of 109 particles per unit area was used in the current calculations and in Figure 10.
First, in order to con�rm the theoretical convergence of the kernel, increasingly large numbers
of particles were used and the error between the exact and the numerical solution was plotted
in Figure 11. The error is de�ned as in the following equation:

Error≡
√∑

(fn(x; y)− fexact(x; y))2�x�y
An0�2=4

(39)

The summation is done over all the interior points in the domain. The denominator normalizes
the error, and the value of A is unity (similarly, the length scale L mentioned in the x-axis
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Figure 10. The exact solution of the spatially varying source term in the
two-dimensional test case (see Equation (8)).

Figure 11. The normalized error, as de�ned in Equation (9), plotted versus mesh resolution
for di�ering numbers of particles per kernel width.

label in Figure 11 is also unity). For very large numbers of particles (at least 105) and
modest resolution (�x=L approximately 0.25), the quadratic kernel indeed provides fourth-
order convergence in two-dimensions.
Figure 12 compares the quadratic kernel to other methods of calculating the source term in

two dimensions. The nearest-node method accumulates all of a particle’s contribution to the
source at whatever continuum phase node is closest. The cloud-in-cell method recommended
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Figure 12. The normalized error, as de�ned in Equation (9), for
various kernels with 100 particles per kernel width.

by Aggarwal et al. [2] is currently the standard method for most direct numerical simulation
codes, and provides a weighting function developed from geometric arguments. This method
was also tested and plotted in Figure 12. Finally, the quadratic kernel is shown for comparison.
At resolutions of a quarter to half of the governing length scale, the quadratic kernel provides
the most accurate estimate of the source term. For over-resolved cases, where the mesh
resolution is very small compared to the length scales of the gradients, the statistical errors
dominate and the method of Aggarwal et al. is the best.
As mentioned previously, the property of strong conservation is not retained for the higher

order kernel. This means that there is little reason to limit the width of the kernel to the span
of a cell. Under some conditions, the kernel width can be optimized so that it is �ne enough
to respect physical length scales and large enough to include numerous particles. With kernel
width as a free parameter, one is free to look at Figure 8 and choose the method and size
to minimize total error. This could lead to either a high-order kernel with low resolution or
a least-squares method with high resolution (for a more rigorous comparison, one must let
the sample size be a function of the kernel width). From the two-dimensional results shown
in Figure 12, the lowest overall error comes from choosing a large kernel width and the
quadratic kernel. If the simulation constraints permit the latitude of using these wider kernels,
the accuracy of the inter-phase coupling can be improved. It remains to be seen, how methods
for optimal kernel width could be constructed and how e�ective these methods will be.

CONCLUSIONS

Theoretically, it is possible to achieve high-order spatial accuracy in the calculation of gas-
phase source terms in Lagrangian–Eulerian CFD codes. This high-order accuracy would bring
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gas-to-particle coupling up to the formal accuracy of the other parts of the Lagrangian–Eulerian
calculation. An analytical derivation has been provided for fourth- and sixth-order accuracy
in one dimension, and it has been shown that two- or three-dimensional methods can easily
be constructed by taking the product of one-dimensional kernels.
Numerical tests show that indeed, the predictions of theoretical accuracy are correct; sixth-

order accuracy (and presumably even higher) can be achieved with little computational e�ort.
Two-dimensional tests show that the extension to higher dimensions is simple.
Practically, there are still several obstacles to observing a large bene�t in CFD simulations.

Past work in non-parametric function analysis has shown that for modest sample sizes, statisti-
cal noise makes it di�cult to observe convergence. The number of computational particles per
cell must increase rapidly in order to keep statistical error from dominating spatial error, as
the computational mesh is resolved. Even least-squares techniques, which tend to be resilient
in the presence of statistical noise, provide only a modest bene�t when the source term is
well resolved.
In actual CFD calculations, high-order schemes could reduce spatial error only under cer-

tain conditions. In the current two-dimensional tests, the high-order kernel was superior for 100
particles per cell and at resolutions about one quarter of the variational length scale.
For example, high-order methods could produce a signi�cant bene�t when sources change
rapidly over a few mesh cells. Since one generally expects a modeller to use a resolution just
su�cient for the problem at hand, many practical situations could show some bene�t from
using high-order methods. Using kernel widths larger than the gas-phase cells further allow
the inter-phase coupling error to be minimized. This idea was shown to be bene�cial with
low-order methods for one-dimensional tests by Dreeben and Pope [11].
Further, the test results shown in this paper are for a single instant in time, not for an

evolving transient calculation. In a full CFD simulation, cell source terms are calculated for a
large number of cells over a large number of time steps. It is possible that the large amount of
repetition in real CFD calculations may provide some moderation of the statistical errors. In
the case of steady-state CFD calculations, averaging the source terms over multiple iterations
would certainly provide statistical bene�t. One also has the option of broadening the support of
the kernels to include a larger sample size since the kernel width need not be equal to the cell
size. Furthermore, the CPU cost of adding more particles to the calculation generally incurs
a linear cost and is far easier than adding mesh resolution. Given the low cost of using high-
order kernels, these options may prove attractive in the future if su�cient progress can be made
on algorithms for optimizing the kernel width. Currently, for very �ne meshes or low numbers
of particles per cell, least-squares methods are likely to be more stable and more accurate.

NOMENCLATURE

a, b, c coe�cients which appear in the assumed polynomial form of a high-order
kernel

A, B coe�cients which appear in the assumed polynomial variation of a
source term

E mean expected error; the total error, including both spatial and statistical
contribution

f the exact source contribution to the gas phase per unit volume
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fn a numerical estimate of f based on n particles
〈f〉 a numerical estimate of f based on an in�nite number of particles,

the expected value of f
‘ the bounds of the kernel support
L the width of the domain used in the test cases
L2 a norm of a vector, used for quantifying error
n(x) number density of physical particles
si a source contribution of mass, momentum, or energy from the ith particle
u(x) relative velocity between particles and gas
W a kernel, or weighting function, representing the relationship between

location and contribution of source terms
x spatial location
xp the spatial location of a particle
y the distance between a node and a particle, e.g. (xp − x)
Greek letters

� a coe�cient representing how rapidly the test function varies in space
�2 the variance of a function or random variable
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